麻了,这让人绝望的大事务提交原创
# 背景
继上次的if else优化也有段时间了,最近小猫又又又着道了,接手的那个项目又遇到了坑爹的地方,经常性的报死锁异常,经常性的主从延迟......通过报错信息按图索骥,发现代码是这样的。
这是一段商品发布的逻辑,我们可以看到参数校验、查询、最终的insert以及update全部揉在一个事务中。遇到批量发布商品的时候就经常出现问题了,数据库主从延迟是肯定少不了的。
# 开启优化
其实像上述小猫遇到的这种状况我们就称其为大事务,那么我们就大概有这么一个定义。我们将执行时间长,并且操作数据比较多的事务叫做大事务。
# 大事务产生的原因
在我们日常开发过程中,其实经常会遇到大事务,老猫总结了一下,往往原因其实总结下来有这么几点(当然存在纰漏的地方,也欢迎大家评论区留言补充)
- 一次性操作的数据量确实多,大量的锁竞争,比如批量操作这种行为。
- 事务粒度过大,代码中的 @Transactional使用不当,其他非DB操作比较多,耗时久。比如调用RPC接口,在例如上述小猫遇到的check逻辑甚至都揉在一起等等。
# 造成的影响
那么大事务造成的影响又是什么呢?
- 从开发者的角度来看的话,部分大事务必定对应的复杂的业务逻辑,代码封装事务拆解不合理,研发侧维护困难,维护成本高。
- 从最终系统以及运维角度来看
- 出现了死锁。
- 造成了主从延迟。
- 大事务消耗更多的磁盘空间,回滚成本高。
- 大事务发生的过程中,由于连接池持续被打开,很容易造成数据库连接池被沾满。
- 接口响应慢导致接口超时,甚至导致服务不可用等等 (欢迎大家补充)
# 优化方案
大事务既然有这么多坑,那么我们来看一下我们日常开发过程中,应该如何做到尽量规避呢?老猫整理了以下几种优化方法。
- 降低事务颗粒度,大事务拆解小事务
- 编程式事务代替@Transactional。
- 非update以及insert动作外移。
- 大数据量一次性提交尽可能拆解分批处理。
- 拆解原始事务,异步化处理。
# 降低事务颗粒度
1、我们对@Transactional的事务粒度把控不好,有时候如果使用不当的话事务功能可能会失效,如果经验不足,很难排查,那么我们不如直接使用粗细粒度更好把控的编程式事务。TransactionTemplate。这样的话咱们的优化代码就可以写好才能如下方式。
@Autowired
private TransactionTemplate transactionTemplate;
public boolean publishProduct(PublishProductRequest request) {
externalSellerAuthorizeService.checkAuthorizeValid(request.getSellerId(),request.getThirdCategoryId(),request.getBrandId());
......
transactionTemplate.execute((status) -> {
try{
//执行insert
productDao.insert(productDO);
productDescDao.insert(productDescDO);
....
//其他insert以及update操作
}catch (Exception e) {
//回滚
status.setRollbackOnly();
return true;
}
return false;
});
return true;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# 非update以及insert动作外移。
原始代码:
@Transactional(rollbackFor=Exception.class)
public void save(Req req) {
checkParam(req);
saveData1(req);
updateData2(req);
}
private void checkParam(Req req){
Data1 data = selectData1();
Data2 data2 = selectData2();
if(data.getSomeThing() != STATUS_YES){
throw new BusinessTimeException(.....);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
然后部分小伙伴就觉得外移么,如果不用@Transactional的情况,那直接这样不就行了么。
错误改造案例:
class ServiceAImpl implements ServiceA {
@Transactional(rollbackFor=Exception.class)
public void save(Req req) {
saveData1(req);
updateData2(req);
}
private void checkParam(Req req){
Data1 data = selectData1();
Data2 data2 = selectData2();
if(data.getSomeThing() != STATUS_YES){
throw new BusinessTimeException(.....);
}
}
public void save(Req req){
checkParam(req);
doSave(req);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
这个例子是非常经典的错误,这种直接方法调用的做法事务不会生效,老猫以前也踩过这样的坑。因为 @Transactional 注解的声明式事务是通过 spring aop 起作用的, 而 spring aop 需要生成代理对象,直接方法调用使用的还是原始对象,所以事务不会生效。那么我们应该如何改造呢?我们看下正确的改造。
正确改造方案1,当然还是利用上面的TransactionTemplate:
@Autowired
private TransactionTemplate transactionTemplate;
public void save(Req req) {
checkParam(req);
transactionTemplate.execute((status) -> {
try{
saveData1(req);
updateData2(req);
....
//其他insert以及update操作
}catch (Exception e) {
//回滚
status.setRollbackOnly();
return true;
}
return false;
});
}
private void checkParam(Req req){
Data1 data = selectData1();
Data2 data2 = selectData2();
if(data.getSomeThing() != STATUS_YES){
throw new BusinessTimeException(.....);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
正确改造方案2,把 @Transactional 注解加到新Service方法上,把需要事务执行的代码移到新方法中。
@Servcie
public class ServiceA {
@Autowired
private ServiceB serviceB;
private void checkParam(Req req){
Data1 data = selectData1();
Data2 data2 = selectData2();
if(data.getSomeThing() != STATUS_YES){
throw new BusinessTimeException(.....);
}
}
public void save(Req req) {
checkParam(req);
serviceB.save(req);
}
}
@Servcie
public class ServiceB {
@Transactional(rollbackFor=Exception.class)
public void save(Req req) {
saveData1(req);
updateData2(req);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
正确改造方案3:将ServiceA 再次注入到自身(老猫觉得这种方式不优雅,不太推荐,这里就不写了)
# 大数据量一次性提交尽可能拆解分批处理。
我们再来看大数量批量请求的场景,咱们具体来分析一下,假设上游系统存在一个批量导入2w的数据操作。如果我们读取到上游导入的数据,并且直接执行DB一次性执行肯定是不合适的。这种情况就需要我们对其请求的数据量做一个拆解。我们可以采用Lists.partition等等方式将数据拆成多个小的批量然后再进行入库操作处理。
@Servcie
public class ServiceA {
@Autowired
private ServiceB serviceB;
private void batchAdd(List<Long> inventorySkuIdList){
List<List<Long>> partition = Lists.partition(inventorySkuIdList, 1000);
for (List<Long> idList : partition) {
List<InventorySkuDO> inventorySkuDOList = inventorySkuDao.selectByIdList(idList, null);
if (CollectionUtils.isNotEmpty(inventorySkuDOList)) {
serviceB.doInsertUpdate(inventorySkuDOList);
}
}
}
}
@Servcie
public class ServiceB {
@Transactional(rollbackFor=Exception.class)
private void doInsertUpdate(List<InventorySkuDO> inventorySkuDOList){
for (InventorySkuDO inventorySkuDO : inventorySkuDOList) {
doInsert(inventorySkuDO);
doUpdate(inventorySkuDO)
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# 拆解原始事务,异步化处理。
这种异步化处理的方案其实有两种方式进行异步化操作。尤其是涉及到第三方RPC调用或者HTTP调用的时候,这种方案就更加适合。
方案一,采用CompletableFuture异步编排特性,当业务流程比较长的时候,我们可以将一个大业务拆解成多个小的任务进行异步化执行。比如咱们有个批量支付的业务逻辑,因为整个流程是同步的,所以大概有了下面这样的流程。(关于CompletableFeature老猫觉得挺有意思的,后续老猫会出专门的文章来理透该特性,欢迎大家持续关注)。
对应转换成代码逻辑的话,大概是这样的:
void doBatchPay() {
CompletableFuture<Object> task1 = CompletableFuture.supplyAsync(() -> {
return "订单信息";
});
CompletableFuture<Object> task2 = CompletableFuture.supplyAsync(() -> {
try {
return doPay();
} catch (InterruptedException e) {
//log add
}
});
//task1、task2 执行完执行task3 ,需要感知task1和task2的执行结果
CompletableFuture<Object> future = task1.thenCombineAsync(task2, (t1, t2) -> {
return "邮件发送成功";
});
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
方案二,Mq异步化处理,还是针对上述业务逻辑,我们是否可以将最终的发送邮件的动作剥离出来,最终再去统一执行发送邮件。
关于伪代码这里不展开了,有兴趣的小伙伴可以自行实现一下。
# 总结
虽然有时候业务催的确实比较急,我们也不得不加班加点赶工撸代码。但是我们不能由于这样的原因而舍弃对系统性能的追求。有人说反正这个项目我后面不维护的,坑的话还是留一个下一个人去解决吧,代码能跑就行,在此老猫还是想奉劝一句“研发何必为难研发”。在日常开发的过程中不仅仅是上面这样的大事务问题,其实还有很多优化的点,例如对象的创建,接口幂等,重试容错等等。后续老猫会持续分享近年来的经验,可能不是最好的,但是希望对你有用,当然也希望大家能够给出宝贵建议,欢迎大家持续关注。